Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330nm deep microgrooves.
نویسندگان
چکیده
The surface microtexture of an orthopaedic device can regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved to include the field of surface modification; in particular, nanotechnology has allowed for the development of experimental nanoscale substrates for investigation into cell nanofeature interactions. Here primary human osteoblasts (HOBs) were cultured on ordered nanoscale groove/ridge arrays fabricated by photolithography. Grooves were 330nm deep and either 10, 25 or 100microm in width. Adhesion subtypes in HOBs were quantified by immunofluorescent microscopy and cell-substrate interactions were investigated via immunocytochemistry with scanning electron microscopy. To further investigate the effects of these substrates on cellular function, 1.7K gene microarray analysis was used to establish gene regulation profiles of mesenchymal stem cells cultured on these nanotopographies. Nanotopographies significantly affected the formation of focal complexes (FXs), focal adhesions (FAs) and supermature adhesions (SMAs). Planar control substrates induced widespread adhesion formation; 100microm wide groove/ridge arrays did not significantly affect adhesion formation yet induced upregulation of genes involved in skeletal development and increased osteospecific function; 25microm wide groove/ridge arrays were associated with a reduction in SMA and an increase in FX formation; and 10microm wide groove/ridge arrays significantly reduced osteoblast adhesion and induced an interplay of up- and downregulation of gene expression. This study indicates that groove/ridge topographies are important modulators of both cellular adhesion and osteospecific function and, critically, that groove/ridge width is important in determining cellular response.
منابع مشابه
Effect of topographical control by a micro-molding process on the activity of human Mesenchymal Stem Cells on alumina ceramics
BACKGROUND Numerous studies have reported that microgrooves on metal and polymer materials can affect cell adhesion, proliferation, differentiation and guidance. However, our knowledge of the cell activity associated with microgrooves on ceramics, such as alumina, zirconia, hydroxyapatite and etc, is very incomplete, owing to difficulties in the engraving of microgrooves on the hard surface of ...
متن کاملRegulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملDifferentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells
Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...
متن کاملTooth Regeneration with Stem Cell Sources
Introduction: During the last decade, advances in tissue engineering and stem cell-based tooth regeneration have provided realistic and attractive means of replacing lost or damaged teeth. The first adult stem cells isolated from dental tissues were dental pulp stem cells (DPSCs). When transplanted with hydroxyl apatite/tri calcium phosphate (HA/TCP) powder, they formed a dentin-like structure...
متن کاملبررسی چسبندگی و تغییرات مورفولوژیک سلولهای استئوبلاست انسان در مجاورت MTA تیره، MTA سفید و سیمان پرتلند
Background and Aim: Osteoblasts and periodontal ligament cells play a major role in wound healing after root end resection. The interaction of osteoblasts with filling materials is critical in healing of surgical lesions. The aim of this study was to evaluate the morphology and adhesion of human osteoblasts (MG-63 cell line) in contact with IRM, gray MTA, white MTA and Portland cement (PC) as r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 5 27 شماره
صفحات -
تاریخ انتشار 2008